MINI OLYMPIAD

1. Let f be a continuous function on the unit square. Prove that

$$
\begin{gathered}
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right)^{2} d y+\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right)^{2} d x \leq \\
\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right)^{2}+\int_{0}^{1} \int_{0}^{1} f^{2}(x, y) d x d y
\end{gathered}
$$

2. Find

$$
\min _{a, b \in \mathbb{R}} \max \left(a^{2}+b, b^{2}+a\right) .
$$

3. Prove that for all real numbers x,

$$
2^{x}+3^{x}-4^{x}+6^{x}-9^{x} \leq 1
$$

4. Find all positive integers n for which the equation $n x^{4}+4 x+3=0$ has a real root.
5. If $a_{1}+a_{2}+\ldots+a_{n}=n$ prove that $a_{1}^{4}+a_{2}^{4}+\ldots+a_{n}^{4} \geq n$.
6. Let $\mathrm{P}(\mathrm{x})$ be a polynomial with positive real coefficients. Prove that

$$
\sqrt{P(a) P(b)} \geq P(\sqrt{a b})
$$

for all positive real numbers a and b.
7. Show that all real roots of the polynomial $P(x)=x^{5}-10 x+35$ are negative.
8. On a sphere of radius 1 are given four points A, B, C, D such that $A B \cdot A C \cdot A D \cdot B C \cdot B D \cdot C D=$ $\frac{2^{9}}{3^{3}}$. Prove that the tetrahedron $A B C D$ is regular.
9. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be nonnegative real numbers. Show that

$$
\left(a_{1} a_{2} \ldots a_{n}\right)^{\frac{1}{n}}+\left(b_{1} b_{2} \ldots b_{n}\right)^{\frac{1}{n}} \leq\left(\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{n}+b_{n}\right)\right)^{\frac{1}{n}}
$$

10. Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!n!}{m^{m} n^{n}}
$$

